Радиоэлектроника и новые технологии
- по вопросам размещения рекламы -

Создан первый в мире спиновый триод на основе наномембранного спин-детектора электронов

0 2

«Это первый в мире спин-детектор с пространственным разрешением, в котором в качестве основного функционального элемента используется спин-фильтр — ферромагнитная наномембрана. Эффективность нового устройства значительно выше, чем у существующих детекторов спина электронов. При этом не нужно разгонять исследуемые частицы до больших энергий, как это делается в самом известном спин-детекторе Мотта. Более того, наш прибор проводит измерения с пространственным разрешением, а значит способен собрать на несколько порядков больше данных в единицу времени. Его срок службы исчисляется годами (коммерческие устройства со схожим функционалом требуют замены через 1-2 недели), а оценочная стоимость на порядки ниже доступных на рынке спин-детекторов, даже не имеющих пространственного разрешения», — поясняет первый автор статьи, руководитель научной группы, заведующий лабораторией физики и технологии гетероструктур ИФП СО РАН, ведущий научный сотрудник ЦКП «СКИФ» профессор РАН Олег Евгеньевич Терещенко.

Мировой рекорд определения спиновой поляризации электронов

Спин – одна их характеристик электрона, как масса или заряд. Он может находиться в одном из двух состояний − либо «спин-вверх», либо «спин-вниз». Если в пучке у всех электронов спины направлены в одну сторону, то пучок считается 100% спин-поляризованным. Отдельная задача — создать пучок поляризованных электронов, этому была посвящена более ранняя работа ученых. Столь же трудно эффективно определять поляризацию частиц — упрощенно говоря «посчитать», сколько электронов в пучке со спином вверх, сколько со спином вниз.

«Мы впервые провели эксперименты по измерению характеристик двумерного спин-фильтра (ферромагнитной наномембраны) в режиме прямого изображения. Получен мировой рекорд эффективности детектирования спиновой поляризации электронов с учетом пространственного разрешения. Разработанный спин-детектор позволяет увеличить эффективность измерения спиновой поляризации в десять тысяч — миллион раз относительно одноканального спин-детектора Мотта. Это важный результат с точки зрения контроля и использования спин-поляризованных электронов и электронных пучков в разных спектроскопических и микроскопических методиках. Появляется возможность узнать больше об исследуемом материале, его магнитных свойствах, обнаруживая мельчайшие изменения в структуре или составе. В том, что касается микроскопии, спин-поляризация может использоваться для получения изображений с высоким разрешением и для изучения свойств отдельных атомов или молекул», — продолжает Олег Терещенко.

Назад в будущее

Для проверки работы спин-детектора, а именно его ферромагнитной наномембраны, исследователи изготовили вакуумный спин-триод (спинтрон), аналог вакуумной лампы — триода.

«В вакуумной лампе есть управляющая сетка, которая “отпирает” и “запирает” электроны (разрешает или нет протекание тока). А в нашем приборе тоже своеобразная сетка — ферромагнитная нано-мембрана, но только с помощью неё мы управляем селекцией по спину. Пропускаем электроны с определенным спином не по запирающему напряжению, а по магнитному моменту. На переключение по спину можно тратить меньше энергии, увеличить частоту работы электронных устройств, — а значит, и объемы передаваемой, хранимой, обрабатываемой информации. Спинтрон состоит из источника спин-поляризованных электронов на основе мультищелочного фотокатода, управляющего электрода — магнитной наномембраны, покрывающей каналы микроканальной пластины, и люминесцентного экрана в качестве детектируемого электрода», — добавляет ученый.

Направление «вакуумная микроэлектроника» возникло в 1980-х, в связи с появлением полупроводниковых устройств с вакуумным зазором. Это привело к выражению «Back to the Future» (назад в будущее). Почему «назад»? Предшественником современных транзисторов были вакуумные лампы. Хорошо известны их недостатки по сравнению с полупроводниковыми транзисторами — громоздкость и высокое энергопотребление. Но были и преимущества — простота конструкции, легкая замена отдельных элементов, радиационная стойкость. И что очень важно: вакуум — идеальный диэлектрик. А диэлектрик — один из ключевых элементов при изготовлении современного транзистора.

В 21 веке развитие нанотехнологий трансформирует вакуумную микроэлектронику в вакуумную наноэлектронику. Следующим логичным шагом будет развитие в сторону создания вакуумной спинтроники. Вакуумная спинтронная наноэлектроника может обеспечивать гораздо более высокие скорости переключения электронных устройств, меньшие потери энергии, устойчивость к радиации, широкий диапазон температур.

«В ходе исследования мы сделали первый шаг к созданию элементной базы вакуумной спинтроники, а уже созданный спиновый триод (спинтрон) можно отнести к классу приборов в этой сфере. По сути, вакуумная спинтроника — новое направление, которое наша группа начала развивать в мировом научном сообществе. Спинтрон — аналог вакуумной лампы с тем отличием, что в лампах прошлого века управление осуществлялось через заряд электрона, а созданный прибор управляется через воздействие на спин электрона», — комментирует О.Е. Терещенко

Оставить комментарий